221 research outputs found

    Assessing the effectiveness of marine nature‐based solutions with climate risk assessments

    Get PDF
    Abstract Prospective risks from climate change impacts in ocean and coastal systems are urging the implementation of nature‐based solutions (NBS). These are climate‐resilient strategies to maintain biodiversity and the delivery of ecosystem services, contributing to the adaptation of social‐ecological systems and the mitigation of climate‐related impacts. However, the effectiveness of measures like marine restoration or conservation is not exempt from the impacts of climate change, and the degree to which they can sustain biodiversity and ecosystem services remains unknown. Such uncertainty, together with the slow pace of implementation, causes decision‐makers and societies to demand a better understanding of NBS effects. To address this gap, in this study, we use the risk mitigation capacity of marine NBS as a proxy for their effectiveness while providing a toolset for the implementation of the method. The method considers environmental data and relies on expert elicitation, allowing us to go beyond current practice to evaluate the effectiveness of NBS in reducing habitat or species risks under different future socio‐political and climate‐change scenarios. As a result, we present a ready‐to‐use tool, and supporting materials, for the implementation of the Climate Risk Assessment method and an illustrative example considering the application of the NBS “nature‐inclusive harvesting” in two shellfisheries. The method works as a rapid assessment that guarantees comparability across sites and species due to its low data or resource demand, so it can be widely incorporated to adaptation policies across the marine realm.Agencia Estatal de Investigación | Ref. PID2021-127092OB-I00Universidade de Vigo/CISU

    A Graph Theory approach to assess nature’s contribution to people at a global scale

    Get PDF
    The use of Graph Theory on social media data is a promising approach to identify emergent properties of the complex physical and cognitive interactions that occur between humans and nature. To test the effectivity of this approach at global scales, Instagram posts from fourteen natural areas were selected to analyse the emergent discourse around these areas. The fourteen areas, known to provide key recreational, educational and heritage values, were investigated with different centrality metrics to test the ability of Graph Theory to identify variability in ecosystem social perceptions and use. Instagram data (i.e., hashtags associated to photos) was analysed with network centrality measures to characterise properties of the connections between words posted by social media users. With this approach, the emergent properties of networks of hashtags were explored to characterise visitors’ preferences (e.g., cultural heritage or nature appreciation), activities (e.g., diving or hiking), preferred habitats and species (e.g., forest, beach, penguins), and feelings (e.g., happiness or place identity). Network analysis on Instagram hashtags allowed delineating the users’ discourse around a natural area, which provides crucial information for effective management of popular natural spaces for peopleThis work is a product of ECOMAR research network (Evaluation and monitoring of marine ecosystem services in Iberoamerica; project number 417RT0528, funded by CYTED). Three co-authors were funded by H2020-Marie Skłodowska-Curie Action during the conduction of this work: SdJ, funded by MSCA-IF-2016 (ref. 743545); AOA, funded by MSCA-IF-2016 (ref. 746361); ARF, funded by MSCA-IF-2014 (ref. 655475)S

    Using graph theory and social media data to assess cultural ecosystem services in coastal areas: Method development and application

    Full text link
    The use of social media (SM) data has emerged as a promising tool for the assessment of cultural ecosystem services (CES). Most studies have focused on the use of single SM platforms and on the analysis of photo content to assess the demand for CES. Here, we introduce a novel methodology for the assessment of CES using SM data through the application of graph theory network analyses (GTNA) on hashtags associated to SM posts and compare it to photo content analysis. We applied the proposed methodology on two SM platforms, Instagram and Twitter, on three worldwide known case study areas, namely Great Barrier Reef, Galapagos Islands and Easter Island. Our results indicate that the analysis of hashtags through graph theory offers similar capabilities to photo content analysis in the assessment of CES provision and the identification of CES providers. More importantly, GTNA provides greater capabilities at identifying relational values and eudaimonic aspects associated to nature, elusive aspects for photo content analysis. In addition, GTNA contributes to the reduction of the interpreter's bias associated to photo content analyses, since GTNA is based on the tags provided by the users themselves. The study also highlights the importance of considering data from different social media platforms, as the type of users and the information offered by these platforms can show different CES attributes. The ease of application and short computing processing times involved in the application of GTNA makes it a cost-effective method with the potential of being applied to large geographical scales.Comment: 23 pages, 5 figures, 2 appendice

    Using graph theory and social media data to assess cultural ecosystem services in coastal areas: Method development and application

    Get PDF
    The use of social media (SM) data has emerged as a promising tool for the assessment of cultural ecosystem services (CES). Most studies have focused on the use of single SM platforms and on the analysis of photo content to assess the demand for CES. Here, we introduce a novel methodology for the assessment of CES using SM data through the application of graph theory network analyses (GTNA) on hashtags associated to SM posts and compare it to photo content analysis. We applied the proposed methodology on two SM platforms, Instagram and Twitter, on three worldwide known case study areas, namely Great Barrier Reef, Galapagos Islands and Easter Island. Our results indicate that the analysis of hashtags through graph theory offers similar capabilities to photo content analysis in the assessment of CES provision and the identification of CES providers. More importantly, GTNA provides greater capabilities at identifying relational values and eudaimonic aspects associated to nature, elusive aspects for photo content analysis. In addition, GTNA contributes to the reduction of the interpreter’s bias associated to photo content analyses, since GTNA is based on the tags provided by the users themselves. The study also highlights the importance of considering data from different SM platforms, as the type of users and the information offered by these platforms can show different CES attributes. The ease of application and relative short computing processing times involved in the application of GTNA makes it a cost-effective method with the potential of being applied to large geographical scalesThis work is a result of the ECOMAR Network, “Evaluation and monitoring of marine ecosystem services in Iberoamérica” (project number 417RT0528) funded by the CYTED program. During the time of the study and writing period ARF was supported by a H2020-Marie Skłodowska-Curie Action MSCA-IF-2014 (ref. 655475); AOA was supported by a H2020-Marie Skłodowska-Curie Action MSCA-IF-2016 (ref. 746361); SdJ was supported by a H2020-Marie Skłodowska-Curie Action MSCA-IF-2016 (ref. 743545); PP was funded by the Xunta de Galicia (RECREGES II Project, Grant ED481B2018/ 017)S

    Citizen science in data and resource-limited areas: A tool to detect long-term ecosystem changes

    Get PDF
    Coral reefs are threatened by numerous global and local stressors. In the face of predicted large-scale coral degradation over the coming decades, the importance of long-term monitoring of stress-induced ecosystem changes has been widely recognised. In areas where sustained funding is unavailable, citizen science monitoring has the potential to be a powerful alternative to conventional monitoring programmes. In this study we used data collected by volunteers in Southeast Sulawesi (Indonesia), to demonstrate the potential of marine citizen science programmes to provide scientifically sound information necessary for detecting ecosystem changes in areas where no alternative data are available. Data were collected annually between 2002 and 2012 and consisted of percent benthic biotic and abiotic cover and fish counts. Analyses revealed long-term coral reef ecosystem change. We observed a continuous decline of hard coral, which in turn had a significant effect on the associated fishes, at community, family and species levels. We provide evidence of the importance of marine citizen science programmes in detecting long-term ecosystem change as an effective way of delivering conservation data to local government and national agencies. This is particularly true for areas where funding for monitoring is unavailable, resulting in an absence of ecological data. For citizen science data to contribute to ecological monitoring and local decision-making, the data collection protocols need to adhere to sound scientific standards, and protocols for data evaluation need to be available to local stakeholders. Here, we describe the monitoring design, data treatment and statistical analyses to be used as potential guidelines in future marine citizen science projects

    Creating space, aligning motivations, and building trust: a practical framework for stakeholder engagement based on experience in 12 ecosystem services case studies

    Get PDF
    Ecosystem services inherently involve people, whose values help define the benefits of nature's services. It is thus important for researchers to involve stakeholders in ecosystem services research. However, a simple and practicable framework to guide such engagement, and in particular to help researchers anticipate and consider key issues and challenges, has not been well explored. Here, we use experience from the 12 case studies in the European Operational Potential of Ecosystem Research Applications (OPERAs) project to propose a stakeholder engagement framework comprising three key elements: creating space, aligning motivations, and building trust. We argue that involving stakeholders in research demands thoughtful reflection from the researchers about what kind of space they want to create, including if and how they want to bring different interests together, how much space they want to allow for critical discussion, and whether there is a role for particular stakeholders to serve as conduits between others. In addition, understanding their own motivations—including values, knowledge, goals, and desired benefits—will help researchers decide when and how to involve stakeholders, identify areas of common ground and potential disagreement, frame the project appropriately, set expectations, and ensure each party is able to see benefits of engaging with each other. Finally, building relationships with stakeholders can be difficult but considering the roles of existing relationships, time, approach, reputation, and belonging can help build mutual trust. Although the three key elements and the paths between them can play out differently depending on the particular research project, we suggest that a research design that considers how to create the space in which researchers and stakeholders will meet, align motivations between researchers and stakeholders, and build mutual trust will help foster productive researcher–stakeholder relationships

    Multidifferential study of identified charged hadron distributions in ZZ-tagged jets in proton-proton collisions at s=\sqrt{s}=13 TeV

    Full text link
    Jet fragmentation functions are measured for the first time in proton-proton collisions for charged pions, kaons, and protons within jets recoiling against a ZZ boson. The charged-hadron distributions are studied longitudinally and transversely to the jet direction for jets with transverse momentum 20 <pT<100< p_{\textrm{T}} < 100 GeV and in the pseudorapidity range 2.5<η<42.5 < \eta < 4. The data sample was collected with the LHCb experiment at a center-of-mass energy of 13 TeV, corresponding to an integrated luminosity of 1.64 fb1^{-1}. Triple differential distributions as a function of the hadron longitudinal momentum fraction, hadron transverse momentum, and jet transverse momentum are also measured for the first time. This helps constrain transverse-momentum-dependent fragmentation functions. Differences in the shapes and magnitudes of the measured distributions for the different hadron species provide insights into the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb public pages

    Study of the BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} decay

    Full text link
    The decay BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} is studied in proton-proton collisions at a center-of-mass energy of s=13\sqrt{s}=13 TeV using data corresponding to an integrated luminosity of 5 fb1\mathrm{fb}^{-1} collected by the LHCb experiment. In the Λc+K\Lambda_{c}^+ K^{-} system, the Ξc(2930)0\Xi_{c}(2930)^{0} state observed at the BaBar and Belle experiments is resolved into two narrower states, Ξc(2923)0\Xi_{c}(2923)^{0} and Ξc(2939)0\Xi_{c}(2939)^{0}, whose masses and widths are measured to be m(Ξc(2923)0)=2924.5±0.4±1.1MeV,m(Ξc(2939)0)=2938.5±0.9±2.3MeV,Γ(Ξc(2923)0)=0004.8±0.9±1.5MeV,Γ(Ξc(2939)0)=0011.0±1.9±7.5MeV, m(\Xi_{c}(2923)^{0}) = 2924.5 \pm 0.4 \pm 1.1 \,\mathrm{MeV}, \\ m(\Xi_{c}(2939)^{0}) = 2938.5 \pm 0.9 \pm 2.3 \,\mathrm{MeV}, \\ \Gamma(\Xi_{c}(2923)^{0}) = \phantom{000}4.8 \pm 0.9 \pm 1.5 \,\mathrm{MeV},\\ \Gamma(\Xi_{c}(2939)^{0}) = \phantom{00}11.0 \pm 1.9 \pm 7.5 \,\mathrm{MeV}, where the first uncertainties are statistical and the second systematic. The results are consistent with a previous LHCb measurement using a prompt Λc+K\Lambda_{c}^{+} K^{-} sample. Evidence of a new Ξc(2880)0\Xi_{c}(2880)^{0} state is found with a local significance of 3.8σ3.8\,\sigma, whose mass and width are measured to be 2881.8±3.1±8.5MeV2881.8 \pm 3.1 \pm 8.5\,\mathrm{MeV} and 12.4±5.3±5.8MeV12.4 \pm 5.3 \pm 5.8 \,\mathrm{MeV}, respectively. In addition, evidence of a new decay mode Ξc(2790)0Λc+K\Xi_{c}(2790)^{0} \to \Lambda_{c}^{+} K^{-} is found with a significance of 3.7σ3.7\,\sigma. The relative branching fraction of BΛc+ΛˉcKB^{-} \to \Lambda_{c}^{+} \bar{\Lambda}_{c}^{-} K^{-} with respect to the BD+DKB^{-} \to D^{+} D^{-} K^{-} decay is measured to be 2.36±0.11±0.22±0.252.36 \pm 0.11 \pm 0.22 \pm 0.25, where the first uncertainty is statistical, the second systematic and the third originates from the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb public pages

    Measurement of the ratios of branching fractions R(D)\mathcal{R}(D^{*}) and R(D0)\mathcal{R}(D^{0})

    Full text link
    The ratios of branching fractions R(D)B(BˉDτνˉτ)/B(BˉDμνˉμ)\mathcal{R}(D^{*})\equiv\mathcal{B}(\bar{B}\to D^{*}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(\bar{B}\to D^{*}\mu^{-}\bar{\nu}_{\mu}) and R(D0)B(BD0τνˉτ)/B(BD0μνˉμ)\mathcal{R}(D^{0})\equiv\mathcal{B}(B^{-}\to D^{0}\tau^{-}\bar{\nu}_{\tau})/\mathcal{B}(B^{-}\to D^{0}\mu^{-}\bar{\nu}_{\mu}) are measured, assuming isospin symmetry, using a sample of proton-proton collision data corresponding to 3.0 fb1{ }^{-1} of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode τμντνˉμ\tau^{-}\to\mu^{-}\nu_{\tau}\bar{\nu}_{\mu}. The measured values are R(D)=0.281±0.018±0.024\mathcal{R}(D^{*})=0.281\pm0.018\pm0.024 and R(D0)=0.441±0.060±0.066\mathcal{R}(D^{0})=0.441\pm0.060\pm0.066, where the first uncertainty is statistical and the second is systematic. The correlation between these measurements is ρ=0.43\rho=-0.43. Results are consistent with the current average of these quantities and are at a combined 1.9 standard deviations from the predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and additional information, are available at https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb public pages

    Socioeconomic valuation of the marine environment in Wales : implications for coastal management

    No full text
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore